Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38714534

RESUMO

BACKGROUND: Ovarian cancer is a malignant tumor of the female reproductive system, and its mortality rate is as high as 70%. Estrogen receptor α (ERα)-positive ovarian cancer accounted for most of all ovarian cancer patients. ERα can promote the growth and proliferation of tumors. METHODS: The combined effect of All-trans retinoic acid (ATRA) and tamoxifen was obtained by the combination screening of tamoxifen and compound library by MTS. In addition, colony formation assay, flow cytometry analysis, immunofluorescence staining, quantitative real-time polymerase chain reaction (PCR), western blot, and tumor xenotransplantation models were used to further evaluate the efficacy of tamoxifen and ATRA in vitro and in vivo for ER-α-positive ovarian cancer. RESULTS: In our study, we found that All-trans retinoic acid (ATRA) can cooperate with tamoxifen to cause cell cycle arrest and apoptosis and inhibit ERα-positive ovarian cancer in vivo and in vitro. Further exploration of the mechanism found that ATRA can Inhibit genes related to the ERα signaling pathway, enhance the sensitivity of ERα-positive ovarian cancer cells to tamoxifen, and ascertain the effectiveness of tamoxifen and ATRA as treatments for ovarian cancer with an ERα-positive status. CONCLUSION: Combination of ATRA and tamoxifen is a new way for the treatment of ERα-positive ovarian cancer.

2.
Mol Plant Microbe Interact ; 37(4): 416-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38171485

RESUMO

Soybean cyst nematode (Heterodera glycines, soybean cyst nematode [SCN]) disease adversely affects the yield of soybean and leads to billions of dollars in losses every year. To control the disease, it is necessary to study the resistance genes of the plant and their mechanisms. Isoflavonoids are secondary metabolites of the phenylalanine pathway, and they are synthesized in soybean. They are essential in plant response to biotic and abiotic stresses. In this study, we reported that phenylalanine ammonia-lyase (PAL) genes GmPALs involved in isoflavonoid biosynthesis, can positively regulate soybean resistance to SCN. Our previous study demonstrated that the expression of GmPAL genes in the resistant cultivar Huipizhi (HPZ) heidou are strongly induced by SCN. PAL is the rate-limiting enzyme that catalyzes the first step of phenylpropanoid metabolism, and it responds to biotic or abiotic stresses. Here, we demonstrate that the resistance of soybeans against SCN is suppressed by PAL inhibitor l-α-(aminooxy)-ß-phenylpropionic acid (L-AOPP) treatment. Overexpression of eight GmPAL genes caused diapause of nematodes in transgenic roots. In a petiole-feeding bioassay, we identified that two isoflavones, daidzein and genistein, could enhance resistance against SCN and suppress nematode development. This study thus reveals GmPAL-mediated resistance against SCN, information that has good application potential. The role of isoflavones in soybean resistance provides new information for the control of SCN. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glycine max , Isoflavonas , Fenilalanina Amônia-Liase , Doenças das Plantas , Tylenchoidea , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Animais , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Resistência à Doença/genética , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
3.
Environ Int ; 183: 108422, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217903

RESUMO

Ozone (O3) is one of the most harmful pollutants affecting health. However, the potential effects of O3 exposure on microbes in the gut-lung axis related to lung injuries remain elusive. In this study, female mice were exposed to 0-, 0.5- and 1-ppm O3 for 28 days, followed by routine blood tests, lung function tests and histopathological examination of the colon, nasal cavity and lung. Mouse faeces and lungs were collected for 16s rRNA sequencing to assess the overall microbiological profile and screen for key differential enriched microbes (DEMs). The key DEMs in faecal samples were Butyricimonas, Rikenellaceae RC9 and Escherichia-Shigella, whereas those in lung samples were DNF00809, Fluviicola, Bryobacter, Family XII AD3011 group, Sharpea, MND1 and unclassified Phycisphaeraceae. After a search in microbe-disease databases, these key DEMs were found to be associated with lung diseases such as lung neoplasms, cystic fibrosis, pneumonia, chronic obstructive pulmonary disease, respiratory distress syndrome and bronchiectasis. Subsequently, we used transcriptomic data from Gene Expression Omnibus (GEO) with exposure conditions similar to those in this study to cross-reference with Comparative Toxicogenomic Database (CTD). Il-6 and Ccl2 were identified as the key causative genes and were validated. The findings of this study suggest that exposure to O3 leads to significant changes in the microbial composition of the gut and lungs. These changes are associated with increased levels of inflammatory factors in the lungs and impaired lung function, resulting in an increased risk of lung disease. Altogether, this study provides novel insights into the role of microbes present in the gut-lung axis in O3 exposure-induced lung injury.


Assuntos
Lesão Pulmonar , Ozônio , Pneumonia , Camundongos , Feminino , Animais , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , RNA Ribossômico 16S , Pulmão , Pneumonia/induzido quimicamente , Ozônio/toxicidade
4.
Phytochem Anal ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191170

RESUMO

INTRODUCTION: Steroidal saponins characterised by intricate chemical structures are the main active components of a well-known traditional Chinese medicine (TCM) Rhizoma Paridis. The metabolic profiles of steroidal saponins in vivo remain largely unexplored, despite their renowned antitumor, immunostimulating, and haemostatic activity. OBJECTIVE: To perform a comprehensive analysis of the chemical constituents of Rhizoma Paridis total saponins (RPTS) and their metabolites in rats after oral administration. METHOD: The chemical constituents of RPTS and their metabolites were analysed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). RESULTS: A reliable UPLC-Q-TOF-MS/MS method was established, and a total of 142 compounds were identified in RPTS. Specifically, diosgenin-type saponins showed the diagnostic ions at m/z 415.32, 397.31, 283.25, 271.21, and 253.20, whereas pennogenin-type saponins exhibited the diagnostic ions at m/z 413.31, 395.30, and 251.20. Based on the characteristic fragments and standard substances, 15 specific metabolites were further identified in the faeces, urine, plasma, and bile of rats. The metabolic pathways of RPTS, including phase I reactions (de-glycosylation and oxidation) and phase II reactions (glucuronidation), were explored and summarised, and the enrichment of metabolites was characterised by multivariate statistical analysis. CONCLUSION: The intricate RPTS could be transformed into relatively simple metabolites in rats through de-glycosylation, which provides a reference for further metabolic studies and screening of active ingredients for TCM.

5.
Cell Commun Signal ; 21(1): 316, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924113

RESUMO

G protein-coupled receptors (GPCRs) play a key role in regulating the homeostasis of the internal environment and are closely associated with tumour progression as major mediators of cellular signalling. As a diverse and multifunctional group of proteins, the G protein signalling regulator (RGS) family was proven to be involved in the cellular transduction of GPCRs. Growing evidence has revealed dysregulation of RGS proteins as a common phenomenon and highlighted the key roles of these proteins in human cancers. Furthermore, their differential expression may be a potential biomarker for tumour diagnosis, treatment and prognosis. Most importantly, there are few systematic reviews on the functional/mechanistic characteristics and clinical application of RGS family members at present. In this review, we focus on the G-protein signalling regulator (RGS) family, which includes more than 20 family members. We analysed the classification, basic structure, and major functions of the RGS family members. Moreover, we summarize the expression changes of each RGS family member in various human cancers and their important roles in regulating cancer cell proliferation, stem cell maintenance, tumorigenesis and cancer metastasis. On this basis, we outline the molecular signalling pathways in which some RGS family members are involved in tumour progression. Finally, their potential application in the precise diagnosis, prognosis and treatment of different types of cancers and the main possible problems for clinical application at present are discussed. Our review provides a comprehensive understanding of the role and potential mechanisms of RGS in regulating tumour progression. Video Abstract.


Assuntos
Neoplasias , Proteínas RGS , Humanos , Transdução de Sinais , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
J Neuroinflammation ; 20(1): 208, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697347

RESUMO

Cellular senescence serves as a fundamental and underlying activity that drives the aging process, and it is intricately associated with numerous age-related diseases, including Alzheimer's disease (AD), a neurodegenerative aging-related disorder characterized by progressive cognitive impairment. Although increasing evidence suggests that senescent microglia play a role in the pathogenesis of AD, their exact role remains unclear. In this study, we quantified the levels of lactic acid in senescent microglia, and hippocampus tissues of naturally aged mice and AD mice models (FAD4T and APP/PS1). We found lactic acid levels were significantly elevated in these cells and tissues compared to their corresponding counterparts, which increased the level of pan histone lysine lactylation (Kla). We aslo identified all histone Kla sites in senescent microglia, and found that both the H3K18 lactylation (H3K18la) and Pan-Kla were significantly up-regulated in senescent microglia and hippocampus tissues of naturally aged mice and AD modeling mice. We demonstrated that enhanced H3K18la directly stimulates the NFκB signaling pathway by increasing binding to the promoter of Rela (p65) and NFκB1(p50), thereby upregulating senescence-associated secretory phenotype (SASP) components IL-6 and IL-8. Our study provides novel insights into the physiological function of Kla and the epigenetic regulatory mechanism that regulates brain aging and AD. Specifically, we have identified the H3K18la/NFκB axis as a critical player in this process by modulating IL-6 and IL-8. Targeting this axis may be a potential therapeutic strategy for delaying aging and AD by blunting SASP.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Histonas , Interleucina-6 , Interleucina-8 , Microglia , NF-kappa B , Transdução de Sinais , Encéfalo , Envelhecimento , Ácido Láctico
7.
Front Genet ; 14: 1240650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600654

RESUMO

Human choline dehydrogenase (CHDH) is a transmembrane protein located in mitochondria. CHDH has been shown to be one of the important catalytic enzymes that catalyze the oxidation of choline to betaine and is involved in mitochondrial autophagy after mitochondrial damage. In recent years, an increasing number of studies have focused on CHDH and found a close association with the pathogenesis of various diseases, including tumor prognosis. Here we summarized the genomic localization, protein structure and basic functions of CHDH and discuss the progress of CHDH research in metabolic disorders and other diseases. Moreover, we described the regulatory role of CHDH on the progression of different types of malignant tumors. In addition, major pathogenic mechanisms of CHDH in multiple diseases may be associated with single nucleotide polymorphism (SNP). We look forward to providing new strategies and basis for clinical diagnosis and prognosis prediction of diseases by diagnosing SNP loci of CHDH genes. Our work evaluates the feasibility of CHDH as a molecular marker relevant to the diagnosis of some metabolic disorders diseases and tumors, which may provide new targets for the treatment of related diseases and tumors.

8.
Virus Res ; 332: 199127, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149225

RESUMO

Pseudostellaria heterophylla (P. heterophylla) is a popular Chinese medicinal herb that is cultivated widely in China. Viral infection is commonly encountered during the production of P. heterophylla. To identify viruses causing P. heterophylla disease, sRNA and mRNA libraries were built for 2 sets of P. heterophylla plants, one set that was planted only once (FGP) and one that was planted three consecutive three times (TGP) in a field, using virus-free tuberous roots as reproductive materials. A comprehensive procedure, including assembling virus-derived sRNA (vsRNA), assessing and cloning the full-length viral genome, building an infectious cloning vector and constructing a virus-based expression vector, was performed to identify viruses infecting P. heterophylla. Ultimately, 48 contig-related viruses were mined from 6 sRNA and 6 mRNA P. heterophylla libraries. A 9762-bp fragment was predicted to be the complete genome of TuMV virus. This sequence was cloned from P. heterophylla, and its infectivity was evaluated using the virus-infection model plant Nicotiana benthamiana (N. benthamiana) and host plant P. heterophylla. The resulting 9839-bp viral genome was successfully obtained from P. heterophylla and identified as a new P. heterophylla TuMV-ZR isolate. Simultaneously, TuMV-ZR infectious clones were shown to effectively infect P. heterophylla. Furthermore, TuMV-ZR expression vectors were developed, and the ability of a TuMV-ZR-based vector to express foreign genes was determined by analysis with the reporter gene EGFP. TuMV-ZR-based vectors were found to continuously express foreign genes in different organs of P. heterophylla throughout the whole vegetative period. In addition, TuMV-ZR vectors carrying EGFP accumulated in the tuberous roots of P. heterophylla, confirming that tuberous roots are key targets for viral infection and transmission. This study revealed the core pathogenicity of P. heterophylla mosaic virus and developed a new TuMV-ZR-based expression tool that led to long-term protein expression in P. heterophylla, laying the foundation for the identification of the mechanisms of P. heterophylla infection with mosaic viruses and developing tools to express value proteins in the tuberous roots of the medicinal plant P. heterophylla.


Assuntos
Folhas de Planta , Pequeno RNA não Traduzido , Raízes de Plantas , Vetores Genéticos , RNA Mensageiro/metabolismo
9.
Cell Oncol (Dordr) ; 46(5): 1269-1283, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37067748

RESUMO

PURPOSE: Previous studies have shown that TBX21 (T-Box Transcription Factor 21) plays a vital role in coordinating multiple aspects of the immune response especially type 1 immune response as well as tumor progression. However, the function of TBX21 in colorectal cancer (CRC) remains unclear. METHODS: IHC to investigate TBX21 expression in CRC tissues. Cell proliferation and apoptosis assays to validate TBX21 function in vitro and in vivo. RNA-seq assay to explore target genes of TBX21. Human phospho-kinase array assay to explore down-stream signaling of TBX21. RESULTS: We disclosed that the expression of TBX21 was marked decreased in CRC versus normal tissue, and negatively correlated with CRC TNM stages. Surprisingly, we found that the CRC and normal cell lines show no TBX21 expression levels. Ectopic expression of TBX21 inhibited cell proliferation and promoted cell apoptosis in vitro. Moreover, RNA-sequence data first time showed that ARHGAP29 acts as the target gene of TBX21 to mediate down-stream signaling activation. Human phospho-kinase array data first time displayed that ectopic expression of TBX21 reduced kinase RSK and GSK3ß activation. In contrast, knocked down the expression of TBX21 or ARHGAP29 alternatively abolished TBX21 mediated cell proliferation suppression, cell apoptosis enhancement and RSK/GSK3ß activation. In addition, xenograft model studies demonstrated that TBX21 inhibits colorectal tumor progression via ARHGAP29/ RSK/ GSK3ß signaling in vivo. CONCLUSIONS: In summary, the aforementioned findings suggest a model of TBX21 in suppressing CRC progression. This may provide a promising target for CRC therapy.


Assuntos
Neoplasias Colorretais , Humanos , Apoptose/genética , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Transdução de Sinais , Proteínas Quinases S6 Ribossômicas 90-kDa
10.
Environ Int ; 173: 107858, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36881955

RESUMO

Bisphenol A (BPA) analogs, bisphenol B (BPB) and bisphenol AF (BPAF) have been widely detected in the environment and human products with increasing frequency. However, uterine health risks caused by BPB and BPAF exposure need to be further elucidated. The study aimed to explore whether BPB or BPAF exposure will induce adverse outcomes in uterus. Female CD-1 mice were continuously exposed to BPB or BPAF for 14 and 28 days. Morphological examination showed that BPB or BPAF exposure caused endometrial contraction, decreased epithelial height, and increased number of glands. Bioinformatics analysis indicated that both BPB and BPAF disturbed the immune comprehensive landscape of the uterus. In addition, survival and prognosis analysis of hub genes and tumor immune infiltration evaluation were performed. Finally, the expression of hub genes was verified by quantitative real-time PCR (qPCR). Disease prediction found that eight of the BPB and BPAF co-response genes, which participated in the immune invasion of the tumor microenvironment, were associated with uterine corpus endometrial carcinoma (UCEC). Importantly, the gene expression levels of Srd5a1 after 28-day BPB and BPAF exposure were 7.28- and 25.24-fold higher than those of the corresponding control group, respectively, which was consistent with the expression trend of UCEC patients, and its high expression was significantly related to the poor prognosis of patients (p = 0.003). This indicated that Srd5a1 could be a valuable signal of uterus abnormalities caused by BPA analogs exposure. Our study revealed the key molecular targets and mechanisms of BPB or BPAF exposure induced uterine injury at the transcriptional level, providing a perspective for evaluating the safety of BPA substitutes.


Assuntos
Compostos Benzidrílicos , Doenças Uterinas , Humanos , Feminino , Camundongos , Animais , Compostos Benzidrílicos/toxicidade
11.
Sci Total Environ ; 868: 161660, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36690098

RESUMO

Bisphenol S (BPS) has been followed with interest for its endocrine disrupting effects, but exploration on the reproductive system of adult females is lack of deep investigation. In the present study, adult female CD-1 mice were treated with BPS for 28 days at 300 µg/kg/day. After that, uteruses and ovaries were harvested for histopathological examination, RNA-seq analysis, and diseases risk prediction. Hematoxylin-eosin (H&E) staining results showed significant histological alterations in the uterus and ovary of the BPS-exposed mice. Bioinformatics analysis of the RNA-seq screened a certain number of differentially expressed genes (DEGs) in both uterus and ovary between BPS group and their corresponding vehicle control groups (Veh), respectively. Functional enrichment analysis of DEGs found that hormone metabolism and immunoinflammatory related pathways were enriched. Disease risk evaluation of the hub genes was performed and the results indicated that diseases associated with uterus and ovary were mainly related to tumors and cancers. Further pan cancer and ovarian cancer survival analysis based on human diseases database pointed out, Foxa1, Gata3, S100a8 and Shh for uterus, Itgam, Dhcr7, Fdps, Hmgcr, Hsd11b1, Hsd3b1, Ptges, F3, Fn1, Ptger4 and Srd5a1 for ovary were significant correlation with cancer. The findings suggest that BPS causes some histopathological changes, alters the expressions of hub genes, enhances uterine and ovarian tumors or even cancer risks.


Assuntos
Ovário , Útero , Camundongos , Animais , Feminino , Adulto , Humanos , Útero/metabolismo , Fenóis/metabolismo , Sulfonas/metabolismo
12.
Nat Commun ; 13(1): 5808, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192430

RESUMO

Highly conserved MutS and MutL homologs operate as protein dimers in mismatch repair (MMR). MutS recognizes mismatched nucleotides forming ATP-bound sliding clamps, which subsequently load MutL sliding clamps that coordinate MMR excision. Several MMR models envision static MutS-MutL complexes bound to mismatched DNA via a positively charged cleft (PCC) located on the MutL N-terminal domains (NTD). We show MutL-DNA binding is undetectable in physiological conditions. Instead, MutS sliding clamps exploit the PCC to position a MutL NTD on the DNA backbone, likely enabling diffusion-mediated wrapping of the remaining MutL domains around the DNA. The resulting MutL sliding clamp enhances MutH endonuclease and UvrD helicase activities on the DNA, which also engage the PCC during strand-specific incision/excision. These MutS clamp-loader progressions are significantly different from the replication clamp-loaders that attach the polymerase processivity factors ß-clamp/PCNA to DNA, highlighting the breadth of mechanisms for stably linking crucial genome maintenance proteins onto DNA.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Reparo do DNA , Endonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Nucleotídeos , Antígeno Nuclear de Célula em Proliferação/metabolismo
13.
Mol Biotechnol ; 64(9): 958-969, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35262876

RESUMO

Cyclin B1 (CCNB1) is regarded as an oncogene in multiple tumors. This work aims to investigate the expression, function, and related mechanisms of CCNB1 in ovarian carcinoma (OC). Three microarray datasets (GSE14407, GSE18520, and GSE54388) were obtained from the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (DEGs) of OC tissues and normal ovarian tissues. CCNB1 expression in OC tissues and paracancerous tissues was detected by immunohistochemistry. Kaplan-Meier plotter database was utilized to analyze the correlation between CCNB1 expression and the prognosis of OC patients. After the loss-of-function and gain-of-function cell models were established, cell counting kit-8 (CCK-8), bromo-deoxyuridine (BrdU), and transwell experiments were employed to examine the proliferation, migration, and invasion of OC cells, respectively. The targeting relationship between miR-559 and CCNB1 was verified using the dual-luciferase reporter gene experiment. The expressions of CCNB1 mRNA and miR-559 were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Western blot was used to quantify the protein expression of CCNB1. In addition, xenograft nude mouse models were established to examine the effects of CCNB1 on lung metastasis in vivo. CCNB1 expression was markedly increased in OC tissues and cell lines. The overall survival, progression-free survival, and post-progression survival of OC patients with high CCNB1 expression were significantly shorter. OC cell proliferation, migration, and invasion were enhanced by CCNB1 overexpression while CCNB1 knockdown led to opposite effects. MiR-559 expression was remarkably reduced in OC tissues and cell lines, and miR-559 markedly suppressed the malignant characteristics of OC cells. Besides, miR-559 directly targeted the 3' UTR of CCNB1 mRNA and reduced CCNB1 expression at both the mRNA and protein levels. Overexpression of CCNB1 accelerated lung metastasis of OC cells in vivo. CCNB1, of which expression is modulated by miR-559, facilitates proliferation, migration, and invasion of OC cells, therefore, working as a potential therapeutic target of OC. This work provides new insights into the clinical diagnosis and treatment of OC.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Neoplasias Ovarianas , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-35082509

RESUMO

PURPOSE: This study aimed to investigate the correlation between miR-196a expression and the progression and prognosis of cutaneous squamous cell carcinoma (CSCC). PATIENTS AND METHODS: Tissue samples and corresponding paracancerous tissue samples from 117 patients with CSCC were collected. The qRT-PCR analysis was used to detect the expression levels of miR-196a. Kaplan-Meier curve and Cox regression analyses were used to analyze the relationship between miR-196a expression and patients' prognosis. The CCK-8 and transwell assays were used to explore the effects of miR-196a on the abilities of cell proliferation, migration, or invasion. RESULTS: miR-196a expression was significantly up-regulated in CSCC tissues or cell lines, compared with adjacent normal tissues or cell lines, respectively. High expression of miR-196a was associated with positive lymph node metastasis, high TNM stages, and a lower five-year survival rate. The expression level of miR-196a was up-regulated and the proliferation, migration or invasion ability of cells were significantly increased accordingly. CONCLUSION: miR-196a is highly expressed in CSCC, thus affecting the occurrence and development of CSCC. More importantly, miR-196a was shown to have potential as a prognostic marker for CSCC.

15.
Biology (Basel) ; 10(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34943269

RESUMO

BACKGROUND: The yield of soybean is limited by the soybean cyst nematode (SCN, Heterodera glycines). Soybean transformation plays a key role in gene function research but the stable genetic transformation of soybean usually takes half a year. METHODS: Here, we constructed a vector, pNI-GmUbi, in an Agrobacterium rhizogenes-mediated soybean hypocotyl transformation to induce fluorescent hairy roots (FHRs). RESULTS: We describe the operation of FHR-SCN, a fast, efficient and visual operation pathosystem to study the gene functions in the soybean-SCN interaction. With this method, FHRs were detected after 25 days in 4 cultivars (Williams 82, Zhonghuang 13, Huipizhiheidou and Peking) and at least 66.67% of the composite plants could be used to inoculate SCNs. The demographics of the SCN could be started 12 days post-SCN inoculation. Further, GmHS1pro-1 was overexpressed in the FHRs and GmHS1pro-1 provided an additional resistance in Williams 82. In addition, we found that jasmonic acid and JA-Ile increased in the transgenic soybean, implying that the resistance was mainly caused by affecting the content of JA and JA-Ile. CONCLUSIONS: In this study, we established a pathosystem, FHR-SCN, to verify the functional genes in soybeans and the SCN interaction. We also verified that GmHS1pro-1 provides additional resistance in both FHRs and transgenic soybeans, and the resistance may be caused by an increase in JA and JA-Ile contents.

16.
BMJ Open ; 11(11): e051717, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740931

RESUMO

OBJECTIVE: To investigate the care needs of dying patients and their family caregivers in hospice and palliative care in mainland China. METHODS: A search for English and Chinese quantitative and qualitative studies was performed using the following English databases: PubMed (Medline), CINAHL and PsycINFO, as well as Chinese databases: SinoMed and CNKI. The records were independently screened by two reviewers and critiqued using Joanna Briggs Institute Critical Appraisal tools. All quantitative data were transformed into qualitative data, which were converted into textual descriptions. Due to the diversity of included studies, a three-step analysis was performed: narrative summary, thematic analysis and presentation of integrated results in a narrative form. The qualitative findings were pooled using the meta-aggregation approach. RESULTS: The literature search identified 2964 papers after removing duplicates, from which 18 were included (9 quantitative and 9 qualitative studies). All studies were conducted in mainland China. Quantitative studies involved cross-sectional surveys, and qualitative studies involved interviews for data collection. Two synthesised results of patients' needs were identified, including needs to be comfortable and experience a good death. Another two synthesised results of family caregivers' needs included needs to care for and improve the quality of life of patients, and to care for themselves well. CONCLUSION: This study identified that patients and family caregivers have an increasing demand for professional care at the end of life. Professionals, especially nurses, should enact a patients' demand-centred practice to overcome the challenges of organisation, education, emotion and communication to provide high-quality end-of-life care.


Assuntos
Hospitais para Doentes Terminais , Cuidados Paliativos , Cuidadores , Estudos Transversais , Humanos , Pesquisa Qualitativa , Qualidade de Vida
17.
Acta Biochim Biophys Sin (Shanghai) ; 53(7): 805-814, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34009234

RESUMO

Collagen is the main component of the extracellular matrix. Hydroxylation of proline residues on collagen, catalyzed by collagen prolyl 4-hydroxylase (C-P4H), is essential for the stability of the collagen triple helix. Vertebrate C-P4H is an α2ß2 tetramer with three isoenzymes differing in the catalytic α-subunits, which are encoded by P4HA1, P4HA2, and P4HA3 genes. In contrast, ß-subunit is encoded by a single gene P4HB. The expressions of P4HAs and P4HB are regulated by multiple cellular factors, including cytokines, transcription factors, and microRNAs. P4HAs and P4HB are highly expressed in many tumors and participate in cancer progression. Several inhibitors of P4HAs and P4HB have been confirmed to have anti-tumor effects, suggesting that targeting C-P4H is a feasible strategy for cancer treatment. Here, we summarize recent progresses on the function and expression of regulatory mechanisms of C-P4H in cancer progression and point out the potential development of therapeutic strategies in targeting C-P4H in the future.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Prolil Hidroxilases/biossíntese , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Prolil Hidroxilases/genética
18.
Sci Rep ; 11(1): 6042, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723269

RESUMO

Our aims were to determine the accuracy of an improved formula for determining the minimum occlusive force (MOF) of a vascular clamp on rats' abdominal aortas, compare our findings with the calculated theoretical MOF, and provide reference data for clinical research and development of medical instruments that cause minimal damage. We created a vessel closure model and developed a formula for calculating the theoretical MOF of arterial vessels when they are occluded. This formula utilises the blood pressure in the blood vessel, its diameter, and the width of the vascular clamp. We then measured the actual MOF in 24 rat abdominal aortic segments with different diameters and different blood pressures and compared the theoretical and actual MOFs. Analysis of the experimental data showed a probability of 0.315, which means that, under the condition of normal distribution, the difference between the theoretical and actual MOF is not significant at the α = 0.05 level. Thus, the actual measured MOF tended to be consistent with the theoretical MOF calculated by the formula we developed. The improved formula will provide a reference for clinical research and development of medical instruments that cause minimal injury, thus contributing to the development of microsurgery.


Assuntos
Aorta Abdominal/cirurgia , Desenho de Equipamento , Instrumentos Cirúrgicos , Procedimentos Cirúrgicos Vasculares/instrumentação , Animais , Aorta Abdominal/fisiopatologia , Masculino , Projetos Piloto , Ratos , Ratos Sprague-Dawley
19.
BMC Oral Health ; 20(1): 252, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912209

RESUMO

BACKGROUND: Oral lichen planus (OLP) is a relatively common mucocutaneous disorder, and its causative factors and pathogenesis are not fully understood. Existing studies on the association between hematinic deficiencies and OLP are limited and inconsistent. The aim of this study was to assess the hematinic deficiencies in a cohort of OLP patients and evaluate the correlation between hematinic deficiencies and OLP. METHODS: A total of 236 OLP patients and 226 age-and-gender-matched healthy controls were enrolled in this study. The levels of hemoglobin (Hb), serum folate, vitamin B12 and ferritin were measured and compared between OLP patients and healthy controls. An REU (reticular/hyperkeratotic, erosive/erythematous, ulcerative) scoring system was adopted and compared between the OLP patients with and without hematinic deficiencies. The correlation between hematinic deficiencies and OLP was analyzed. RESULTS: The frequencies of serum ferritin and vitamin B12 deficiency in OLP patients were both significantly higher than those of the healthy controls. According to gender and age, the profiles of hematinic deficiencies in OLP patients were significantly different. As for the REU score, no significant difference existed between OLP patients with and without hematinic deficiencies. Both serum ferritin deficiency and serum vitamin B12 deficiency were significantly correlated with OLP. CONCLUSIONS: The present study suggested a significant association between hematinic deficiencies and OLP. Iron, folate, and vitamin B12 levels in OLP patients should be monitored routinely. Further studies are warranted to explore the interactions between OLP and hematinic deficiencies.


Assuntos
Hematínicos , Líquen Plano Bucal , Deficiência de Vitamina B 12 , Autoanticorpos , Estudos de Casos e Controles , Humanos , Líquen Plano Bucal/complicações
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(3): 365-370, 2020 May.
Artigo em Chinês | MEDLINE | ID: mdl-32543144

RESUMO

OBJECTIVE: To investigate the effect of down-regulation of SND1 expression on senescence of human diploid fibroblasts. METHODS: Western blot and immunohistochemistry were used to detect the expression of SND1 in young or senescent 2BS cells and aged tissues. Immunofluorescence was conducted to detect the localization of SND1 in young 2BS cells. CCK8 and EDU were performed to detect the proliferation of 2BS. Colony formation analysis was used to evaluate the capacity of colony formation of 2BS. Expression chip and RT-qPCR analysis were performed to detect the change of SASP expression level. ß-galactosidase staining was employed to indicate the senescent 2BS cells. RESULTS: The expression of SND1 in the senescent 2BS cells was significantly down-regulated compared with in the younger 2BS cells, and in human colon adenomas, its expression was also significantly down-regulated compared with in non-lesion colon tissues. In young 2BS, knockdown of SND1 inhibited the proliferation and colony formation of 2BS, and led to stronger senescence-associated beta-galactosidase staining (SA-ß-gal). Expression chip and RT-qPCR analysis indicated that knockdown of SND1 up-regulated the expression of senescence-associated secretory phenotype components (SASP). CONCLUSIONS: Our data indicated that down-regulation of SND1 regulated human diploid cell senescence by up-regulating the expression of SASP components.


Assuntos
Senescência Celular , Diploide , Endonucleases , Fibroblastos , Regulação para Baixo , Fibroblastos/metabolismo , Humanos , Proteínas Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA